If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+10x-65=0
a = 5; b = 10; c = -65;
Δ = b2-4ac
Δ = 102-4·5·(-65)
Δ = 1400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1400}=\sqrt{100*14}=\sqrt{100}*\sqrt{14}=10\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{14}}{2*5}=\frac{-10-10\sqrt{14}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{14}}{2*5}=\frac{-10+10\sqrt{14}}{10} $
| -3v-3.66=35.34 | | 4^6x-3=1 | | 1x+0x+5=7 | | 6+5n=66 | | 6=5n=66 | | r=-0.625 | | F(n)=4n/3 | | -3=5+n/3 | | 3x+5=2x-1. | | 10(x-2)=6x+15 | | 3x+5x+7=21 | | x/6=-35 | | b/14-7=-8 | | 4x+5x+6=32 | | 280=(5*10)+(10*h)*(5*h) | | 5p-4*2p-5=5 | | 7x^2-5x+10=-9 | | 3^x-4=7^x-1 | | 4x+5x+6=28 | | 4x+5x+6=33 | | 230=10h*5h | | 4.7x-3.6(x-1)=6.2 | | 3u+8=59 | | 14x+7=40 | | y/5-14=14 | | 19=v/4+13 | | 2h-5=20 | | 8(x-31)=6x-18 | | 0.3b=31 | | 7y^2+21y^2=0 | | 3x+9=-6x+9= | | 6x-8x-4=-2x-2 |